Skip to main content
Log in

Naturally transgenic plants as a model for the study of the delayed environmental risks of GMO cultivation

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

The development of genetic engineering raises the question of the biosafety of transgenic organisms. The greatest concerns about the negative effects of GMO cultivation are associated with the possible leakage of transgenes through the crosspollination of closely related nontransgenic forms by transgenic pollen. Naturally transgenic plants are species that experienced agrobacterium-mediated transformation and retained a T-DNA-like sequence in their genomes. These species can be a model for the study of the delayed environmental risks associated with the leakage of transgenes. This opportunity is considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckie, H.J., Warwick, S.I., Nair, H., and Seguin-Swartz, G., Gene flow in commercial fields of herbicide-resistant canola (Brassica napus), Ecol. Appl., 2003, vol. 13, no. 5, pp. 1276–1294.

    Article  Google Scholar 

  • Bing, D.J., Downey, R.K., and Rakow, G.F.W., Hybridizations among Brassica napus,B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field, Plant Breed., 1996, vol. 115, no. 6, pp. 470–473.

    Article  Google Scholar 

  • Brigulla, M. and Wackernagel, W., Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues, Appl. Microbiol. Biotechnol., 2010, vol. 86, no. 4, pp. 1027–41.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K., Dorlhac de Borne, F., Szegedi, E., and Otten, L., Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana, Plant J., 2014, vol. 80, no. 4, pp. 669–682.

    Article  CAS  PubMed  Google Scholar 

  • Chevre, A.M., Eber, F., Baranger, A., Kerlan, M.C., Barret, P., Vallée, P., and Renard, M., Interspecific gene flow as a component of risk assessment for transgenic brassicas, ISHS Brassica Symposium-IX Crucifer Genetics Workshop, 1994, vol. 407, pp. 169–180.

    Google Scholar 

  • Chevre, A.M., Eber, F., Darmency, H., Fleury, A., Picault, H., and Letanneur, J.C., Assessment of interspecific hybridization between transgenic oilseed rape and wild radish under normal agronomic conditions, Theor. Appl. Genet., 2000, vol. 100, no. 8, pp. 1233–1239.

    Article  Google Scholar 

  • Clarkson, J.J., Knapp, S., Garcia, V.F., Olmstead, R.G., Leitch, A.R., and Chase, M.W., Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions, Mol. Phylogenet. Evol., 2004, vol. 33, pp. 75–90.

    Article  CAS  PubMed  Google Scholar 

  • De Block, M., Herrera-Estrella, L., Van Montagu, M., Schell, J., and Zambryski, P., Expression of foreign genes in regenerated plants and their progeny, EMBO J., 1984, vol. 3, pp. 1681–1689.

    PubMed  PubMed Central  Google Scholar 

  • Dunfield, K.E. and Germida, J.J., Impact of genetically modified crops on soil and plant-associated microbial communities, J. Environ. Qual., 2004, vol. 33, pp. 806–815.

    Article  CAS  PubMed  Google Scholar 

  • EFSA GMO Panel Working Group on Animal Feeding Trials, Safety and nutritional assessment of GM plants and derived food and feed: The role of animal feeding trials, Food Chem Toxicol., 2008, Suppl. 1, pp. 2–70.

  • Fernandez-Mazuecos, M. and Vargas, P., Historical isolation versus recent long-distance connections between Europe and Africa in bifid toadflaxes (Linaria sect. Versicolores), Plos One, 2011, vol. 6, p. e22234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fründt, C., Meyer, A.D., Ichikawa, T., and Meins, F., A tobacco homologue of the Ri-plasmid orf13 gene causes cell proliferation in carrot root discs, Mol. Gen. Genet., 1998a, vol. 259, pp. 559–568.

    Article  PubMed  Google Scholar 

  • Furner, I.J., Huffman, G.A., Amasino, R.M., Garfinkel, D.J., Gordon, M.P., and Nester, E.W., An Agrobacterium transformation in the evolution of the genus Nicotiana, Nature, 1986, vol. 319, pp. 422–427.

    Article  CAS  Google Scholar 

  • Giovannetti, M., The ecological risks of transgenic plants, Riv. Biol., 2003, vol. 96, no. 2, pp. 207–223.

    PubMed  Google Scholar 

  • Goodspeed, T.H., The genus Nicotiana, Chron. Bot., 1954, vol. 16, pp. 102–135.

    Google Scholar 

  • Gubanov, I.A., Kiseleva, K.V., Novikov, V.S., and Tikhomirov, V.N., Illyustrirovannyi opredelitel’ rastenii srednei polosy Rossii (Illustrated Keys to Plants of the Central Russian Region), Moscow, 2004, vols. 2–3.

    Google Scholar 

  • Herrera-Estrella, L., Depicker, A., Van Montagu, M., and Schell, J., Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector, Nature, 1983, vol. 1303, pp. 209–213.

    Article  Google Scholar 

  • Hsu, K.J., Montadert, L., Bernoulli, D., Cita, M.B., and Erickson, A., History of the Mediterranean salinity crisis, Nature, 1977, vol. 267, pp. 399–403.

    Article  Google Scholar 

  • Intrieri, M.C. and Buiatti, M., The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana, Mol. Phylogenet. Evol., 2001, vol. 20, pp. 100–110.

    Article  CAS  PubMed  Google Scholar 

  • ISAAA Brief 44–2012: Slides & Tables. http://isaaa.org/resources/publications/briefs/44/pptslides/default.asp. Cited May 1, 2015.

  • Khafizova, G.V. and Matveeva, T.V., Study of cell T-DNA integration sites in representatives of various sections of the genus Nicotiana, Molodezhnyi nauchnyi forum: Estestvennye i meditsinskie nauki. Elektronnyi sbornik statei po materialam XV–XVI studencheskoi mezhdunarodnoi zaochnoi nauchnoprakticheskoi konferentsii (Youth Science Forum: Natural and Medical Sciences. Electronic Collection of Articles Based on Materials of the 15–16th Student International Correspondence Scientific-Practical Conference), Moscow, 2014. http://www.nauchforum.ru/archive/MNF_nature/8-9(15).pdf.

    Google Scholar 

  • Knapp, S., Chase, M.W., and Clarkson, J.J., Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae), Taxon, 2004, vol. 53, pp. 73–82.

    Article  Google Scholar 

  • Kyndt, T., Quispe, D., Zhai, H., Jarret, R., Ghislain, M., Liu, Q., Gheysen, G., and Kreuze, J.F., The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop, PNAS, vol. 112, pp. 5844–5849.

  • Matveeva, T.V. and Lutova, L.A., Horizontal gene transfer from agrobacterium to plants, Front. Plant Sci., 2014, vol. 5, p. 326.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matveeva, T.V., Bogomaz, D.I., Pavlova, O.A., Nester, E.W., and Lutova, L.A., Horizontal gene transfer from genus Agrobacterium to the plant Linaria in nature, Mol. Plant–Microbe Interact., 2012, vol. 25, pp. 1542–1551.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, A.D., Ichikawa, T., and Meins, F., Horizontal gene transfer: Regulated expression of a tobacco homologue of the Agrobacterium rhizogenes rolC gene, Mol. Gen. Genet., 1995, vol. 249, pp. 265–273.

    Article  CAS  PubMed  Google Scholar 

  • Mohajjel-Shoja, H., Clément, B., Perot, J., Alioua, M., and Otten, L., Biological activity of the Agrobacterium rhizogenes-derived trolC gene of Nicotiana tabacum and its functional relation to other plast genes, Mol. Plant–Microbe Interact., 2011, vol. 24, pp. 44–53.

    Article  CAS  PubMed  Google Scholar 

  • Sutton, D.A., A Revision of the Tribe Antirrhineae, London: Oxford University Press, 1988.

    Google Scholar 

  • Suzuki, K., Yamashita, I., and Tanaka, N., Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution, Plant J., 2002, vol. 32, pp. 775–787.

    Article  CAS  PubMed  Google Scholar 

  • UNEP, Soil Biodiversity Key to Environmentally Friendly Agriculture, UNEP Press Release, 2006. http://www.unep.org/Documents.Multilingual/Default.asp?DocumentID=471&ArticleID=5236&l=en. Cited May 10, 2015.

  • Warwick, S.I., Simard, M.J., and James, T., Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population, Mol Ecol., 2008, vol. 17, pp. 1387–1395.

    Article  CAS  PubMed  Google Scholar 

  • Warwick, S.I., Simard, M.-J., Legere, A., Beckie, H.J., Braun, L., Zhu, B., Mason, P., Seguin-Swartz, G., and Stewart, C.N., Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L.,Raphanus raphanistrum L.,Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz, Theor. App. Genet., 2003, vol. 107, pp. 528–539.

    Article  CAS  Google Scholar 

  • White, F., Garfinkel, D., Huffman, G.A., Gordon, M., and Nester, E.W., Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants, Nature, 1983, vol. 301, pp. 348–350.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Matveeva.

Additional information

Original Russian Text © T.V. Matveeva, 2015, published in Ecologicheskaya Genetika, 2015, Vol. 13, No. 2, pp. 118–126.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveeva, T.V. Naturally transgenic plants as a model for the study of the delayed environmental risks of GMO cultivation. Russ J Genet Appl Res 6, 698–704 (2016). https://doi.org/10.1134/S2079059716060046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059716060046

Keywords

Navigation